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Introduction
Insulin resistance characterizes obesity, type 2 diabetes (T2DM) (1), and nonalcoholic fatty liver disease 
(2) and strongly correlates with intramyocellular lipid content (IMLC) in sedentary individuals (3–5). 
Likewise, elevation of  circulating free fatty acids rapidly induces peripheral insulin resistance in sedentary 
humans (6–9). Using noninvasive monitoring of  muscle glucose-6-phosphate (G6P) and glycogen concen-
trations with 31P/13C magnetic resonance spectroscopy (MRS), we demonstrated that lipid-induced insu-
lin resistance is preceded by attenuated increases in muscle G6P reflecting inhibition of  glucose transport/
phosphorylation in sedentary humans (9, 10). This is followed by slower rates of  nonoxidative glucose 

BACKGROUND. Insulin resistance results from impaired skeletal muscle glucose transport/
phosphorylation, linked to augmented lipid availability. Despite greater intramuscular lipids, 
athletes are highly insulin sensitive, which could result from higher rates of insulin-stimulated 
glycogen synthesis or glucose transport/phosphorylation and oxidation. Thus, we examined the 
time course of muscle glycogen and glucose-6-phosphate concentrations during low and high 
systemic lipid availability.

METHODS. Eight endurance-trained and 9 sedentary humans (VO2 peak: 56 ± 2 vs. 33 ± 2 mL/
kg/min, P < 0.05) underwent 6-hour hyperinsulinemic-isoglycemic clamp tests with infusions 
of triglycerides or saline in a randomized crossover design. Glycogen and glucose-6-phosphate 
concentrations were monitored in vastus lateralis muscles using 13C/31P magnetic resonance 
spectroscopy.

RESULTS. Athletes displayed a 25% greater (P < 0.05) insulin-stimulated glucose disposal rate (Rd) 
than sedentary participants. During Intralipid infusion, insulin sensitivity remained higher in the 
athletes (ΔRd: 25 ± 3 vs. 17 ± 3 μmol/kg/min, P < 0.05), supported by higher glucose transporter 
type 4 protein expression than in sedentary humans. Compared to saline infusion, AUC of glucose-
6-phosphate remained unchanged during Intralipid infusion in athletes (1.6 ± 0.2 mmol/L vs. 1.4 
± 0.2 [mmol/L] × h, P = n.s.) but tended to decrease by 36% in sedentary humans (1.7 ± 0.4 vs. 1.1 
± 0.1 [mmol/L] × h, P < 0.059). This drop was accompanied by a 72% higher rate of net glycogen 
synthesis in the athletes upon Intralipid infusion (47 ± 9 vs. 13 ± 3 μmol/kg/min, P < 0.05).

CONCLUSION. Athletes feature higher skeletal muscle glucose disposal and glycogen synthesis 
during increased lipid availability, which primarily results from maintained insulin-stimulated 
glucose transport with increased myocellular glucose-6-phosphate levels for subsequent glycogen 
synthesis.
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disposal (NOGD) reflecting lower muscle glycogen synthesis. Similar reductions in muscle glucose trans-
port/phosphorylation are typical for chronic insulin-resistant states such as obesity and T2DM (11–13).

In contrast to sedentary humans, endurance-trained athletes generally present with higher IMLC con-
tent in the face of  higher peripheral insulin sensitivity (14). We previously reported that endurance-trained 
insulin-sensitive humans could be at least partially protected from lipid-induced insulin resistance (15). Upon 
lipid infusion, these athletes exhibited an only minor decrease in peripheral insulin sensitivity compared to 
untrained humans. However, this study did not allow us to clarify whether greater muscle glucose transport/
phosphorylation or glycogen synthesis is mainly responsible for the protection from lipid-induced insulin 
resistance in trained skeletal muscle. Noninvasive 13C MRS is the state-of-the-art technique to directly mon-
itor the time course of  intramuscular G6P and glycogen concentrations and to measure net rates of  muscle 
glycogen synthesis. This method overcomes artifacts resulting from ex vivo glycogen breakdown in muscle 
biopsies; from steady state issues and extramuscular glucose metabolism, which affect both glucose disap-
pearance rate (Rd) and glucose appearance rate (Ra) in isotopic dilution studies; and from the intraindividu-
al variability of  indirect calorimetry, which affects the assessment of  nonoxidative glucose metabolism (16).

Skeletal muscle glucose uptake is regulated by glucose transporter type 4 (GLUT4) abundance as well 
as by translocation from the cytosol toward the sarcolemmal membrane, which is independently stimulated 
by exercise and insulin. The insulin-mediated translocation of  GLUT4 to the sarcolemmal membrane is 
impaired in patients with T2DM (17, 18) and results in lower intramuscular glucose and in turn lower G6P 
concentrations (19). Intravenous intralipid infusion reduces both intramuscular glucose and G6P concen-
trations, preceding the development of  lipid-induced insulin resistance (20). Total GLUT4 protein and 
GLUT4 mRNA content also rise over time with chronic endurance training (21–23) as well as within 3 
hours of  exercising (24). This may potentiate the higher insulin-stimulated glucose uptake and glycogen 
storage in skeletal muscle after exercise. Interestingly, a single session of  exercise preceding intralipid infu-
sion completely prevented lipid-induced insulin resistance (25). This could partly be explained by postex-
ercise high insulin-stimulated IRS-1–associated PI3K activity, responsible for GLUT4 translocation (25). 
Several studies provided evidence for a link between acute lipid-induced insulin resistance and defective 
insulin signaling (26–29). Moreover, a recent study indicated that activation of  the DAG/protein kinase 
C-θ (PKC-θ) pathway during intralipid infusion inhibits muscle insulin signaling in sedentary humans (30); 
however, its role in athletes remains controversial (31). To our knowledge, no studies reported on GLUT4 
protein levels in the vicinity of  increased free fatty acids via the infusion of  Intralipid in sedentary individ-
uals or in endurance athletes.

This study therefore tested the hypothesis that endurance-trained athletes maintain greater rates of  
insulin-stimulated muscle glycogen synthesis in vivo during lipid infusion than sedentary humans. In addi-
tion, this study examined whether glucose transport/phosphorylation is rate controlling in athletes under 
insulin-stimulated conditions.

Results
Participants’ characteristics. By design, athletes had higher VO2 peak values (Table 1). Athletes also showed 
slightly lower fasting plasma insulin concentrations (P = 0.07). Fasting plasma glucose, triglycerides (TGs), 
free fatty acids (FFAs), and glycerol concentrations at baseline were comparable between groups (Table 1). 
Fasting glucagon concentrations were not different between athletes and sedentary participants (Table 1).

Plasma lipids. During saline infusion, insulin similarly suppressed circulating FFA concentrations in both 
groups (Figure 1A), while plasma FFA concentrations increased in both groups during the clamp with Intralipid 
infusion, with a tendency toward higher FFA levels in sedentary participants at the end of the infusion period (P 
= 0.07) (Figure 1B). Serum TGs (32) increased upon Intralipid versus saline infusion, with no difference between 
athletes and sedentary participants (TG during Intralipid 402 ± 66 mg/dL in sedentary and 312 ± 49 mg/dL in 
athletes vs. TG during saline 48 ± 9 mg/dL in sedentary vs. 35 ± 6 mg/dL in athletes; P < 0.05 for Intralipid vs. 
saline; P = n.s. between sedentary humans and athletes). Likewise, plasma glycerol concentrations were higher 
upon Intralipid versus saline infusion without a difference between groups (glycerol during Intralipid 76 ± 11 
mmol/L in sedentary and 62 ± 11 mmol/L in athletes vs. glycerol during saline 14 ± 1 mmol/L in sedentary 
and 15 ± 1 mmol/L in athletes; P < 0.05 for Intralipid vs. saline; P = n.s. between sedentary and athletes).

Whole-body and hepatic glucose metabolism. On saline infusion, insulin-stimulated ΔRd was higher in 
athletes than in sedentary participants at t = 210–240 minutes (Figure 1C) and t = 330–360 minutes 
(Figure 1D, both P < 0.05). Upon Intralipid infusions, ΔRd dropped in athletes as well as in sedentary 
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participants at t = 210–240 minutes (Figure 1C) and t = 330–360 minutes (both P < 0.05) (Figure 1D). 
At 330–360 minutes of  Intralipid infusion, ΔRd was approximately 57% and approximately 62% lower 
(both P < 0.05) in athletes and sedentary participants, respectively. Average baseline rates for endoge-
nous glucose production (EGP) (before the start of  infusions) were slightly higher in athletes compared 
with sedentary participants (13.2 ± 0.5 μmol/kg/min vs. 11.8 ± 0.6 μmol/kg/min, P < 0.05). At 210–
240 minutes Intralipid infusion, hepatic insulin sensitivity was similar between sedentary participants 
and athletes (P = n.s., Figure 1E), but suppression of  EGP was higher in athletes at 330–360 minutes 
(–76% vs. –63% in sedentary, P < 0.05, Figure 1F). Within sedentary participants, at 330–360 minutes, 
hepatic insulin sensitivity was also lower during Intralipid versus saline condition (–63% vs. –96%, P < 
0.05, Figure 1F). At this time, hepatic insulin sensitivity remained comparable between both conditions 
for athletes (–76% vs. –86%, P = n.s., Figure 1F).

Time course of  muscle glucose flux. The time course of  the glucose infusion rates (GIRs) throughout saline 
and Intralipid infusion studies in sedentary participants and in athletes is shown in Figure 2, A and B, 
respectively. The AUC of  GIR was about 30% higher under saline-infused conditions in athletes (0.99 ± 
0.06 μmol/kg) than in sedentary participants (0.70 ± 0.06 μmol/kg, P < 0.05, Figure 2C).

To examine tissue-specific glucose flux in skeletal muscle, we monitored in vivo glycogen and G6P 
concentrations. At baseline, average muscle glycogen concentration was 2-fold higher in athletes com-
pared with sedentary participants (110 ± 17 vs. 54 ± 2 mmol/L, P < 0.05). The time course of  insu-
lin-stimulated glycogen concentrations, given by the difference between the clamp and baseline (Δgly-
cogen), were monitored for sedentary participants (Figure 2D) and athletes (Figure 2E). During saline 
conditions, the AUC of  Δglycogen was higher in athletes (92 ± 13 [mmol/L] × h) than in sedentary 
participants (46 ± 8 [mmol/L] × h, P < 0.01, Figure 2E). During Intralipid infusion, the AUC of  Δgly-
cogen was higher in the athletes (69 ± 14 [mmol/L] × h) compared with the sedentary participants (24 
± 5 [mmol/L] × h, P < 0.01, Figure 2F). Within the athletes, the AUC was only nominally, but not 
significantly (P = 0.23), lower upon Intralipid than upon saline infusion (Figure 2F). Within the group 
of  sedentary participants, the AUC fell by approximately 49% upon Intralipid compared with saline 
infusion (P < 0.01). From the glycogen concentrations, we calculated the net muscle glycogen synthesis 
rate (GSR) for the time intervals 0–180 minutes and 180–360 minutes (Figure 3) as well as for the entire 
period (0–360 minutes). Initially (0–180 minutes), the GSR was approximately 64% higher in the athletes 
than in sedentary participants under saline conditions (P < 0.05) and approximately 72% higher under 
lipid-infused conditions (P < 0.05). From 180 minutes to 360 minutes, the GSR did not differ between 
athletes and sedentary participants under saline-infused conditions (P = n.s., Figure 3B). The GSR over 
the entire period from 0 to 360 minutes during saline infusion was approximately 46% higher in athletes 
versus sedentary participants (P < 0.001, Figure 3C). However, Intralipid infusion completely inhibited 
GSR between 180 and 360 minutes in the sedentary participants (P < 0.05, Figure 3B) in contrast to the 
athletes. The GSR calculated over the entire period (0–360 minutes) did not differ between Intralipid and 
saline infusion in the athletes (P = n.s., Figure 3C) but decreased by 72% (P < 0.01, Figure 3C) in the 
sedentary participants during Intralipid compared with saline infusion.

Table 1. Participants’ characteristics

Sedentary (n = 9) Athletes (n = 8)
Age (yr) 23.4 ± 1.1 26.6 ± 1.4
Body weight (kg) 71.7 ± 3.0 68.7 ± 3.3
Body mass index (kg/m2) 24.0 ± 0.6 21.5 ± 0.5A

VO2 peak (mL/kg/min) 33.2 ± 1.9 56.0 ± 1.5A

Fasting glucose (mmol/L) 4.2 ± 0.1 4.1 ± 0.1
Fasting insulin (mU/L) 6.3 ± 1.1 4.6 ± 0.5
Fasting free fatty acids (mol/L) 378 ± 47 361 ± 53
Fasting triglycerides (mg/dL) 94 ± 18 78 ± 11
Fasting glycerol (mmol/L) 23 ± 1 22 ± 2
Fasting glucagon (pg/mL) 83 ± 13 105 ± 17

Data are mean ± SEM. AP < 0.05 vs. sedentary participants.
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The higher Δglycogen and GSR of  the athletes during Intralipid infusion were paralleled by the time 
course of  intramyocellular G6P concentrations (Figure 2G). The AUC of  G6P in athletes upon Intralipid 
infusion did not differ from the AUC of  G6P concentrations during saline infusion (athletes: AUC Intralipid 
1.4 ± 0.2 vs. AUC saline 1.6 ± 0.2 [mmol/L] × h, P = n.s., Figure 2I). Conversely, sedentary participants 
showed a strong trend toward lower AUC of  G6P during Intralipid than during saline infusion (sedentary: 
1.1 ± 0.1 vs. 1.7 ± 0.4 [mmol/L] × h, P = 0.059, Figure 2H). These data indicate that glucose transport is 

Figure 1. Plasma FFA and insulin sensitivity during saline or Intralipid infusion. Nine sedentary humans (blue 
squares) and 8 endurance-trained athletes (red triangles) underwent 2 hyperinsulinemic-isoglycemic clamp tests 
with either saline (full symbols and lines) or Intralipid infusion (empty symbols and dashed lines). The time course 
of plasma FFA (A and B) and whole-body (expressed as ΔRd vs. baseline; C and D) and hepatic (expressed as per-
centage of insulin-suppressed EGP vs. baseline; E and F) insulin sensitivity is shown. Insulin sensitivity was calcu-
lated for 2 steady state time intervals, 210–240 minutes (C and E) and 330–360 minutes (D and F). Data expressed 
as mean ± SEM; *P < 0.05 and **P < 0.01. FFA, free fatty acid; EGP, endogenous glucose production; ΔRd, delta 
rate of glucose disappearance during insulin stimulation minus baseline.
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reduced upon Intralipid infusion in sedentary participants but not in athletes. This reduction in glucose 
transport in sedentary people could result from reduced GSR. In athletes, however, the GSR did not account 
for reduced glucose transport during Intralipid infusion.

Within the athlete group, we performed a subgroup analysis of  the differences of  AUCs of  Δglycogen 
and ΔG6P between the saline- and Intralipid-infused conditions for runners (n = 5) compared with cyclers 
(n = 3). The AUC for Δglycogen under saline versus Intralipid did not differ for runners (AUC Δglycogen: 
saline 79 ± 9 vs. Intralipid 54 ± 9 [mmol/L] × h, P = n.s.) or for cyclers (Δglycogen: saline 113 ± 18 vs. Intr-
alipid 94 ± 19 [mmol/L] × h, P = n.s). Also, for ΔG6P no differences were found between runners (AUC 
ΔG6P: saline 1.7 ± 0.3 vs. Intralipid 1.4 ± 0.2 [mmol/L] × h, P = n.s.) and cyclers (AUC ΔG6P: saline 1.5 
± 0.1 vs. Intralipid 1.6 ± 0.2 [mmol/L] × h, P = n.s.). Differences between runners and cyclers with the 
sedentary group remained similar to results presented for the whole athlete group.

Muscle protein expression. Muscle glucose uptake depends on the amount of  GLUT4 in the muscle 
cell membrane. In sedentary individuals, membrane-bound GLUT4 was 28% lower during Intralipid-in-
sulin than during insulin and saline-insulin infusions (1.23 ± 0.10 AU vs. 0.87 ± 0.11 AU, P < 0.05).  

Figure 2. Time course of changes in GIRs, intramuscular glycogen, and intramuscular G6P during saline or Intralipid infusion. Nine sedentary humans 
(blue squares) and 8 endurance-trained athletes (red triangles) underwent 2 hyperinsulinemic-isoglycemic clamp tests with either saline (full symbols 
and lines) or Intralipid infusion (empty symbols and dashed lines). Infusion rates of exogenous glucose are shown for sedentary participants (A) and for 
athletes (B), as well as the AUC (C). Changes in insulin-stimulated muscle glycogen concentrations (measured with in vivo 13C-MRS and expressed as 
Δglycogen vs. baseline) as well as the AUC (D–F) and G6P (measured with in vivo 31P-MRS and expressed as ΔG6P) and the AUC (G–I) during the clamps are 
depicted. Data are expressed as mean ± SEM; *P < 0.05 and **P < 0.01.
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In athletes, however, membrane-bound GLUT4 upon insulin stimulation was similar during the concomi-
tant Intralipid or saline infusions (0.93 ± 0.18 AU vs. 0.85 ± 0.11 AU, P = n.s., Figure 4).

Discussion
This study reports for the first time to our knowledge the in vivo time course of  intramyocellular G6P 
and glycogen concentrations in endurance-trained athletes under both low and high lipid availability. 
Although augmented lipid availability rapidly induces insulin resistance in sedentary humans at approx-
imately 120 minutes — as reported before (8, 9, 20, 33–35), endurance-trained athletes develop insulin 
resistance at approximately 180 minutes and thus are largely prevented from developing lipid-induced 
muscle insulin resistance by maintaining transmembrane muscle glucose transport.

By in vivo monitoring of glucose flux using multinuclei MRS, this study found that the lipid-induced insulin 
resistance in athletes is at least partly restored when compared with sedentary people. In line, muscle G6P levels 
in the athletes did not drop upon Intralipid infusion, and insulin-stimulated GSRs were maintained despite Intr-
alipid infusion. This finding indicates that endurance training can protect against the inhibitory effect of fatty 
acids on glucose transport/phosphorylation with concomitant chronically high glycogen synthesis.

Muscle glycogen synthesis reflects NOGD and represents the major fraction of  whole-body glucose 
disposal during insulin stimulation (13). The partial prevention of  lipid-induced insulin resistance in the 
athletes seems mainly due to preserved NOGD. This finding extends our previous findings of  higher whole-
body NOGD in athletes than in sedentary humans during increased lipid availability (15). The remain-
ing high NOGD supports the notion that myocellular glycogen synthesis could be the predominant route 
of  whole-body insulin-stimulated NOGD in athletes also, as examined in the present study. The mainte-
nance of  high rates of  glycogen synthesis could result either (a) from greater activity of  glycogen synthase 
despite lower availability of  G6P (resulting from impaired glucose transport/phosphorylation as reported 
for sedentary humans) or (b) from maintained glucose transport/phosphorylation resulting in constant 
myocellular G6P levels, sufficient to stimulate glycogen synthesis. Monitoring of  myocellular G6P concen-
trations with 31P MRS revealed marked differences between saline and Intralipid infusion. The decrease in 
G6P observed in the sedentary participants under lipid-infused conditions was consistent with the original 
report of  lipid-induced effects on muscle glucose flux (9). In athletes, the absence of  any decrease in G6P 
along with the constantly high GSRs despite high lipid availability clearly indicates that exercise training 
preserves myocellular glucose transport/phosphorylation under these conditions. These data are supported 
by a previous study demonstrating that severe insulin-resistant offspring of  parents diagnosed with T2DM, 
featuring blunted insulin-stimulated increase of  muscle G6P and reduced glycogen, exhibit a marked 
improvement of  insulin-stimulated muscle G6P and glycogen synthesis upon chronic exercise training (36). 
Nevertheless, these studies show that exercise controls insulin-stimulated muscle glucose transport/phos-
phorylation and glycogen synthesis, thereby increasing insulin sensitivity. Of  note, the improvement in 
insulin-stimulated whole-body glucose uptake after 12 weeks of  exercise training seemed to be exclusively 
due to oxidative glucose metabolism, at least in T2DM and obese humans (37).

The athletes featured higher basal glycogen concentrations compared with the sedentary partici-
pants. By design, all participants refrained from exercise 3 days preceding the clamp tests. Actually, the 

Figure 3. Rates of intramuscular glycogen synthesis during saline or Intralipid infusion. Nine sedentary humans (blue squares) and 8 endur-
ance-trained athletes (red triangles) underwent 2 hyperinsulinemic-isoglycemic clamp tests with either saline (full symbols) or intralipid infusion 
(empty symbols). Rates of muscle glycogen synthesis are shown for the time intervals 0–180 minutes (A), 180–360 minutes (B), and 0–360 minutes (C) 
of the clamps. Data expressed as mean ± SEM; *P < 0.05.
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exercise constraint could explain the higher amount of  glycogen stores because normally these glycogen 
stores would deplete upon exercise, depending on the exercise intensity and duration (38). However, 
lower glycogen content would stimulate activation of  glycogen synthase and thereby drive muscle gly-
cogen synthesis (39–41). In other words, the activity of  glycogen synthesis has been shown to be greater 
when glycogen is heavily depleted. Previously, we reported that glycogen synthase phosphorylation 
before the start of  the clamp tests is similar between athletes and sedentary participants (15). The higher 
baseline muscle glycogen levels in the athletes would therefore have not resulted in higher rates of  gly-
cogen synthesis than in the sedentary participants.

The maintained rates of  muscle glucose uptake, as reflected by constant myocellular G6P, could have 
resulted from differences in myocellular lipid handling between athletes and sedentary participants. Our 
previous muscle biopsy study addressed myocellular TGs in vastus lateralis muscle (15). Briefly, only in 
type I, but not in type II fibers, the mean area fraction of  TGs was increased exclusively in untrained per-
sons upon exactly the same lipid infusion protocol as presented here. This is in line with previous results 
(42). In another study — although without an intralipid infusion protocol — trained athletes displayed lipid 
storage in a higher number of  droplets in the intramyofibrillar region of  type I fibers when compared with 
patients with T2DM, who store lipids predominately in larger droplets in the subsarcolemmal region of  
type II fibers (43). Together, these findings imply that lipid droplet location and distribution contribute to 
skeletal muscle insulin sensitivity.

The maintained rates of  muscle glucose uptake in athletes could have resulted from greater glucose 
transport via GLUT4. Lipid infusion did not decrease membrane-bound GLUT4 content during insulin 
stimulation in athletes as compared to sedentary persons, exhibiting clearly compromised membrane-bound 
GLUT4 levels during Intralipid infusion. This likely contributes to the higher levels of  muscle glucose 
transport in the athletes. Interestingly, one previous study found no alterations of  insulin receptor signaling 
and AKT levels in athletes during lipid infusion (15). Muscle insulin resistance due to lipid infusion, obesi-
ty, or T2DM most likely occurs via activation of  the DAG/PKC pathway, which leads to inhibitory serine 
phosphorylation of  IRS-1 and subsequent reductions in AKT and glucose transport (30, 33). Consequent-
ly, the athletes’ partial protection from insulin resistance may be the result of  alteration in cellular lipid 
intermediates. A recent study provided supporting evidence by reporting a significant positive relationship 

Figure 4. Expression of GLUT4 in skeletal muscle during saline or Intralipid infusion. Eight sedentary humans (blue 
squares) and 8 endurance-trained athletes (red triangles) underwent 2 hyperinsulinemic-isoglycemic clamp tests with 
either saline (full symbols) or Intralipid infusion (empty symbols). Biopsies were obtained from the vastus lateralis 
muscle at the end of the clamps. Lanes represent GLUT4 expression of 4 randomly chosen sedentary participants and 
athletes each, determined with Western blotting run on the same gel. The thick lines indicate noncontiguous lanes. 
Data expressed as mean ± SEM; *P < 0.05.
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between muscle PKC-ε and sarcolemmal 1,2 DAG C16:0/C18:2 in insulin-resistant groups but not in ath-
letes (31). In addition, lipid metabolites in other compartments may contribute to the metabolic changes: 
mitochondrial DAG accumulation has been hypothesized to promote increased mitochondrial morpholo-
gy and function and thereby affect metabolism in athletes (44).

Previously, some studies reported that Intralipid infusion diminishes insulin-stimulated microvascular 
recruitment, which may contribute to reduced muscle glucose flux. Rodent studies support this concept 
by showing inhibition of  insulin-mediated capillary recruitment by acute elevation of  FFA (45). Studies 
in humans revealed inconsistent data. We found that vascular effects of  Intralipid infusion are not rate 
controlling for human muscle insulin-stimulated glucose disposal (46), while others reported reduced insu-
lin-stimulated microvascular recruitment upon lipid infusion (47, 48). The present study cannot rule out 
that the endurance-trained athletes were protected against this lipid-hampering of  insulin-stimulated micro-
vascular recruitment and in turn diminished glucose uptake.

In the present study, athletes featured a slightly higher basal rate of  EGP than sedentary humans. 
The higher EGP may have contributed to the higher insulin-suppressed EGP percentage, which could 
have led to overestimation of  the effect of  exercise training on hepatic insulin sensitivity. Of  note, 
knowledge on fasting and even postexercise hepatic glucose metabolism in endurance-trained athletes is 
still scarce. The current evidence indicates that — in contrast to skeletal muscle — liver glycogen con-
centrations as well glycogenolysis is lower in athletes than in untrained humans during moderate-to-high 
exercise (49). In the present study, both groups followed a carbohydrate-rich diet for 3 days preceding 
the clamp days, which would render such effects unlikely. Interestingly, prolonged low-carbohydrate 
diets may lead to lower EGP and glycogenolysis during exercise, when compared with a normal, mixed 
diet (50). One may speculate that the high basal EGP in athletes may result in increased responsiveness 
of  the adrenal medulla, in turn favoring higher production and lower clearance of  glucose (51). The 
design of  the present study cannot rule out the operation of  such a mechanism underlying the higher 
basal EGP values in chronically trained humans.

In this study, the athlete group consisted of  both runners and cyclers. Although electromyography 
recording showed that both types of  physical activity train the vastus lateralis muscle (52–54), some 
studies do report differences in the efficiency of  the vastus lateralis muscle between runners and cyclers 
(55, 56). Separate analysis of  glucose flux in runners and cyclers, however, revealed no differences 
between runners and cyclers.

Taken together, athletes exhibit higher muscle glucose disposal and glycogen synthesis during increased 
lipid availability primarily resulting from maintained insulin-stimulated glucose transport with increased 
myocellular G6P levels for subsequent glycogen synthesis.

Methods
Participants. Nine healthy, sedentary young humans (6 males/3 females) and 8 chronically endurance-trained 
humans (5 males/3 females), matched for age, were included (Table 1 and Supplemental Figure 1; supple-
mental material available online with this article; https://doi.org/10.1172/jci.insight.127928DS1). Medi-
cation use, family history of  diabetes, and unstable dietary habits were exclusion criteria. All participants 
underwent an incremental aerobic cycling test until exhaustion (57). By design, endurance-trained humans 
had to participate in endurance exercise activities, such as running and/or cycling, thrice weekly for at least 
2 years, with or without combination with other sports. Untrained participants had a sedentary lifestyle and 
did not participate in any regular physical exercise. Participants were defined as athletes if  maximal oxygen 
uptake (VO2 peak) was more than 55 mL/kg/min for men and more than 50 mL/kg/min for women and 
if  insulin-stimulated Rd was more than 60 μmol/kg/min. Participants were defined as sedentary when VO2 
peak was less than 45 mL/kg/min for both sexes. In total, 26 humans were screened, of  whom 9 sedentary 
participants and 8 athletes fulfilled the inclusion criteria. All measurements were conducted at the research 
facility of  the German Diabetes Center in Düsseldorf.

Hyperinsulinemic-euglycemic clamp. Three days before the clamp tests, all participants refrained from any 
exercise. Also, participants consumed a carbohydrate-rich meal the evening before the test day, i.e., fresh 
pasta with a minimum of approximately 115 g carbohydrates. On the test day, a baseline biopsy was taken 
from the vastus lateralis muscle before the clamp under local anesthesia (2% lidocaine) (30, 58). Each of  the 
participants underwent two 6-hour hyperinsulinemic (40 mU/m2/min) to euglycemic clamps with a primed, 
continuous (0.04 mg/kg/min) intravenous infusion of  [6,6-2H2]glucose. Participants received an intravenous 
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infusion of  either 0.9% saline (1.32 mL/min as control condition) or heparinized (0.2 U/kg/min) long-chain 
triacylglycerols (1.32 mL/min; Intralipid, Braun, Melsungen, Germany) in random order (9, 15). Immediate-
ly after the clamp another muscle biopsy was taken.

MRS. The clamp tests were performed within a 3-T whole-body MRI scanner (Achieva Philips 
Healthcare, Best, the Netherlands). Participants were situated feet first into the magnet in the supine 
position, and the left leg was placed in an MRI-compatible foot brace, which was secured firmly with 
straps for the in vivo detection of  G6P and glycogen concentrations within the vastus lateralis muscle. 
Real-time monitoring of  G6P and glycogen concentrations was conducted at baseline, and during t 
= 60, 120, 180, 240, 300, 360 minutes of  the clamp, via individual 7-cm 31P and 13C coils equipped 
with 12-cm quadrature 1H coils for decoupling, shimming, and imaging (PulseTeq, Cobham, United 
Kingdom). All MRS spectra were processed within the NUTS software package (Acorn NMR Inc., Liv-
ermore, California, USA). 31P-MRS proton-decoupled pulse–acquired measurements (repetition time 
[TR]: 3500 ms, bandwidth [BW]: 2048 kHz, number of  averages [NSA]: 100, decoupling: WALTZ-4, 
time: 6 minutes) were conducted with an excitation block pulse calibrated to adjust for coil loading 
via multiple flip angle measurements of  an internal H3PO4 reference to provide 90° excitation at 2 cm. 
Differences in G6P spectra (effective line broadening: 10 Hz, zero filling: 32k) were detected through 
integration of  the region between 6.83 and 7.43 parts per million (ppm) (12) after the subtraction of  
spectra from baseline measurements and baseline correction. Concentrations of  G6P were determined 
through comparing the resonance areas with the β-ATP resonance from a fully relaxed (TR: 15 seconds) 
baseline spectrum, and a concentration of  5.5 mmol/kg muscle, as assumed for resting ATP concen-
tration (59) 13C-MRS proton-decoupled pulse–acquired measurements (TR: 197 ms, BW: 8 kHz, NSA: 
4000, data points: 256, decoupling: continuous wave, time: 13 minutes) were acquired with a 4.992-ms 
rapid half-passage adiabatic excitation pulse. Coil loading was corrected via integration of  the right-
most peak of  a 13C-enriched sample of  formic acid (MilliporeSigma, Milwaukee, Wisconsin, USA) 
placed within the coil housing (60). C1-glycogen peak areas were determined through the integration of  
the region between 85 and 115 ppm after signal conditioning (effective line broadening: 20 Hz, zero fill-
ing: 8k) and baseline correction. Absolute concentrations of  glycogen within the vastus lateralis muscle 
were determined from 1-L aqueous phantom replacement measurements (KCl: 40 mM, sodium azide: 
0.05%, phosphocreatine: 40 mM, glycogen: 30, 60, and 90 mM, MilliporeSigma, Milwaukee, Wiscon-
sin, USA), and correction for B1-field penetration depth (0–30 mm) via agar gel spacers (KCl: 70 mM, 
agar: 2% weight/volume) was used to simulate subcutaneous adipose tissue.

Blood analyses. Blood samples were immediately cooled and centrifuged and supernatants stored at –80°C. 
Blood glucose was measured using the glucose oxidase method (EKF biosen C-Line glucose analyzer, EKF 
Diagnostics GmbH, Barleben, Germany) (61). Serum TGs were analyzed enzymatically (Hitachi analyzer, 
Roche Diagnostics, Mannheim, Germany) and FFAs microfluorimetrically (Wako, Neuss, Germany) after 
prevention of  lipolysis using orlistat (62). Plasma glycerol was measured enzymatically (R-Biopharm, Darm-
stadt, Germany). Isotopic enrichments of  plasma glucose were measured as previously described (63).

Western blotting. For Western blot analysis, equal amounts of protein were loaded and protein concentra-
tion was directly controlled and analyzed on the nitrocellulose blots by the REVERT Total Protein Stain Kit 
(LI-COR Biosciences, Westburg, Leusden, the Netherlands). For GLUT4 content, muscle membrane fractions 
and total muscle protein fractions were prepared as described previously (64). Blots for GLUT4 were incubated 
with a goat polyclonal GLUT4 antibody (sc1608; Santa Cruz Biotechnology, BioConnect, Huissen, the Neth-
erlands). An appropriate near-infrared–tagged secondary antibody (IRDye, LI-COR Biosciences, Westburg, 
Leusden, the Netherlands) was used to visualize and quantify the appreciated GLUT4 band with the Odyssey 
near-infrared imaging system (LI-COR Biosciences, Westburg, Leusden, the Netherlands). Because of techni-
cal issues, the GLUT4 expression analysis was performed in n = 8 athletes and n = 6 sedentary humans. See the 
full, uncut blots in the online supplemental materials.

Calculations. Ra and Rd were calculated for non–steady state conditions according to Steele (65). Periph-
eral insulin sensitivity was expressed as the ΔRd, which represents the difference between insulin-stimu-
lated and baseline Rd. EGP was calculated from the difference between Ra and mean GIRs. Hepatic insu-
lin sensitivity was calculated as percentage of  EGP suppression by insulin during clamp steady state versus 
baseline (EGP). Net GSR was calculated from the slope of  the linear fit to the glycogen concentration time 
curve during the periods 0–180 minutes and 180–360 minutes (9). The development of  intralipid-induced 
insulin resistance occurs between 120 and 180 minutes in sedentary people (9, 34, 35), which forms the 
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rationale for splitting the analysis of  GSR into these 2 time intervals. For the athletes so far, no information 
on the time course of  lipid-induced insulin resistance has been reported. The GSR, however, was also cal-
culated over the entire period (0–360 minutes). For the GIR and both the time courses of  Δglycogen and 
ΔG6P concentrations, the AUC was calculated using the trapezoid method. Test days were randomized by 
the first authors of  this study using https://www.randomizer.org.

Statistics. Statistical analyses were performed using the statistics computer program SPSS 18 for Mac 
OS X. Differences between groups and between conditions were analyzed by 2-way ANOVA, in which 
comparisons between groups for repeated measures were computed with Tukey’s post hoc correction. Pear-
son’s linear regression analysis was performed to identify correlations between variables. Differences were 
considered significant at P < 0.05.

Study approval. The institutional ethics board of  Heinrich-Heine University approved the study, and all 
participants gave their informed consent in writing.
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